Large-Scale Terahertz Active Arrays in Silicon Using Highly-Versatile Electromagnetic Structures

Cheng Wang, Zhi Hu, Guo Zhang, Jack Holloway and Ruonan Han

Dept. of Electrical Engineering and Computer Science
Microsystem Technology Laboratories
Massachusetts Institute of Technology
The Dawn of a New Terahertz Era

Applications (Demos)

Enabling Technology

Today
The Dawn of a New Terahertz Era

Applications (Demos)

Enabling Technology

System Complexity

Cost & Size

Today

The Next THz Era
The Dawn of a New Terahertz Era

Applications (Demos)

Today The Next THz Era

Enabling Technology

Cost & Size System Complexity
Recent Progress and New Challenges

Our Work

Our Work

Our Work

Our Work

Our Work

[IMS 2013]

[ISSCC 2013]

[ESSIRC 2013]

[ISSCC 2012]

[T-MTT 2014]

[ISSCC 2014]

[ISSCC 2014]

[ISSCC 2010]

[ISSCC 2012]

[ESSIRC 2012]

[ISSCC 2011]

[VLSI 2011]

[ISSCC 2013]

[ISSCC 2014]

[ISSCC 2015]

[ISSCC 2015]

[IMD 2016]

[R. Han, etc., IEDM 2016]
Recent Progress and New Challenges

What are the true advantages of using silicon IC for THz hardware (besides low cost, baseband integration...?)?
Large-Scale Terahertz Active Array

Integration Capability of Silicon Chips

Homogeneous Array
- Power combining
- Beam collimation
- Beam steering
- ...

Heterogeneous Array
- Broadband sensing
- Parallel signal processing
- Waveform generation
- ...

[Diagram showing homogeneous and heterogeneous arrays with corresponding features listed]
Outline

- Background
 - Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
 - Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration
- Conclusion
Outline

- Background
- Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
- Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration
- Conclusion
Beam Collimation in a Radiator Array

- Array of N coherent radiation sources enables:
 - Power combining from a large number of solid-state devices
 - Beam collimation through wave interference
 - The far-field radiation intensity increases by N^2

Optimum Element Pitch: $\lambda/2$
High-Density, Large-Scale Active Array on Chip

- If the $\lambda/2$ pitch is achieved:
 - >10/mm2 radiators at 300 GHz can be built
 - D_{opt} is $\sim300\mu$m
 (with $\varepsilon_{r,\text{eff}}\approx3$)

- High effective isotropically radiated power (EIRP) may be maintained in the mid-THz range
 - Long transmission distance

Note: Calculations Based on a 10mm2 Active Area
High-Density, Large-Scale Active Array on Chip

Note: Calculations Based on a 10mm² Active Area

- 320-GHz Array w/ PLL in SiGe BiCMOS
- 4x4 elements in 1-mm² area
- 3.3mW total radiated power (EIRP: 24mW)
High-Density, Large-Scale Active Array on Chip

• ~100/mm² radiator density should be possible
 – Only 3° of beamwidth using 10-mm² chip area
 (~1000 coherent radiators)

• Large challenges
 – Signal generation at 1 THz
 – Available radiator area: 100×100μm²
 – Highly scalable array architecture

Note: Calculations Based on a 10mm² Active Area
Implementation Challenges

Cutoff Frequency of Silicon Devices

High-Order Harmonic Radiation

- Low device speed requires high-order harmonic generation
 - Optimal device conditions at all harmonic frequencies should be met
- The available area is too small for all these necessary functions

Enabling Technology: Versatile EM Designs

- A multi-functional electromagnetic structure around the transistors to simultaneously perform all the above tasks
 - Orthogonality of various EM wave modes
 - Multi-order standing-wave interference in the near field
High-Density, Large-Scale Active Array on Chip

- 1-THz Array in 130-nm IHP SiGe BiCMOS
- 91 coherent radiator in 1-mm² area
- 0.1-mW total radiated power (EIRP: 20mW)

[Z. Hu and R. Han, IEEE RFIC, Jun. 2017 (Best Student Paper Award-2nd Place)]
Fundamental Oscillation at $f_0=250\text{GHz}$

- At f_0, each square slot line behaves as a pair of $\lambda/4$ standing-wave resonators

Optimal Fundamental Oscillation
Multi-Order Standing Wave Interference

Unwanted harmonics ($@ f_0$, $2f_0$, $3f_0$) are canceled by near-field interference

No Separate Filter is Needed
High-Density Radiation at 1 THz

- The 1-THz standing waves in all horizontal slots are in phase
 - Effective backside radiation ($\eta_{rad,sim} = 63\%$)
 - On average, each oscillator (4x7 in total) drives 2 slot dipole antennas

91 Coherent Antennas ($D = \lambda/2$)
Measurement Results: Frequency and Spectrum

- Oscillation frequency is determined by a sub-harmonic SBD mixer
 - Weak radiation leakage at f_0
 - Measured fundamental frequency: 252.5 to 254.1 GHz
 - $4f_0$ output: 1.01 to 1.016 THz

\[f_0 = 16f_{LO} + f_{offset} \]
Measurement Results: Radiated Power

- The radiated power is measured by a calibrated WR-1.0 zero-biased diode detector
 - Measured total radiated power: 80 μW
 - Measured beam directivity: 24 dBi (θ_{3dB}=11°)
 - Measured EIRP: 20 mW
Measurement Results: Radiated Power

- The measured radiated power is further verified by a photo-acoustic (TK) power meter with large aperture.
Comparison with the State-of-the-Arts in Silicon

• The achieved radiated power is 10x higher than prior silicon-based radiation sources in the mid-THz range
 – 100x higher EIRP than prior arts

• Even larger scale with higher power should be possible
Outline

- Background
- Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
- Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration
- Conclusion
Wave-Matter Interactions for Material Sensing

Non-Ionizing Radiation

Ionizing Radiation

Frequency (Hz)

Long Radio Waves

Radio Waves

Microwave Waves

THz Waves

IR

UV

X rays

Wavelength (m)

Nuclear & Electron Resonance

Molecular Rotation

Molecular Vibration

Electron Level Change

Ionization
THz Spectrometer for Gas Sensing

[Source: HiTRAN.org]

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Frequency (GHz)</th>
<th>Toxic?</th>
<th>Flammable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>230.538001</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>251.199668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Cyanide (HCN)</td>
<td>265.886441</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H₂S)</td>
<td>300.511959</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Nitric Oxide (NO)</td>
<td>250.436966</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>292.987169</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Nitric Acid (HNO₃)</td>
<td>256.657731</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>208.145904</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Carbonyl Sulfide (OCS)</td>
<td>231.060989</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ethylene Oxide (C₂H₄O)</td>
<td>263.292515</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Acrolein (C₃H₅O)</td>
<td>267.279359</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Methyl Mercaptan (CH₃SH)</td>
<td>227.564672</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Methyl Isocyanate (CH₃NCO)</td>
<td>269.788609</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Methyl Chloride (CH₃Cl)</td>
<td>239.187523</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Methanol (CH₃OH)</td>
<td>250.507156</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Acetone (CH₃COCH₃)</td>
<td>259.6184</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Acrylonitrile (C₃H₃CN)</td>
<td>265.935603</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Absorption Intensity:

\[
\gamma = \frac{(2J + 1)hB e^{-hBJ(J+1)/kT}}{kT}
\]

Quantum Number:

\[J \approx 40\]

Wide Detection Range

High Sensitivity

High Selectivity
Dual-THz-Comb Spectrometer

- Conventional single-tone sensing scheme
 - Bandwidth-efficiency tradeoff
 - Long scanning time
 (~3 hours for 100-GHz bandwidth)

- Our scheme using bilateral THz frequency combs
 - Each circuit block maintains peak performance in a narrow band
 - Simultaneous scanning using 20 comb lines
 (>20x increased speed)
220-to-320GHz Comb-Based CMOS Spectrometer

[C. Wang and R. Han, IEEE ISSCC, Feb. 2017]

• 10 molecular-probing THz transceivers
 – Key technology: multi-function, energy-efficient electromagnetic structures
• Seamless coverage of the 220 to 320 GHz band with kHz resolution
Operation of the Transceiver Unit Core

- Optimum device conditions created via a multi-functional EM structure
 - Slot 1: resonator at f_0 and antenna at $2f_0$
 - Slot 2: power recycle path at f_0 and leakage blocker at $2f_0$
- Simultaneous transmit/receive function

High-Parallelism Broadband Architecture

- The relaxed tunability requirement allows the introduction of device positive feedback and higher device gain
 - 43% simulated doubler conversion efficiency
- The total spectral scanning time is reduced by more than 20x, leading to high energy efficiency
CMOS Chip Prototype

- TSMC 65nm bulk CMOS process \(f_{\text{max}} = 250\text{GHz} \)
 - Chip area: 2×3mm\(^2\)
- 10 transceivers (doubler+receiver+antenna), 9 mixers, 40 amplifiers, operating at 0.1~0.3 THz
 - DC power: 1.7 W
Experimental Results

Measured Down-converted IF Spectra of all Comb Lines

Average Phase Noise: -102dBc/Hz @ 1MHz

Spectrum of a Comb Line at 265GHz

Antenna Pattern of One Line (265GHz)
Experimental Results

- Total radiated power of the 10 comb lines: 5.2 mW
 - Highest in silicon
- Minimum detectable signal: 0.1 fW (-130 dBm) @ τ=1 ms
Spectroscopy Demonstration

- Low pressure is applied to eliminate the spectral broadening due to the inter-molecular collisions
- Wavelength modulation is used to reduce the impacts of the standing wave inside the gas chamber
Spectroscopy Results

- Sensitivity: 11 ppm for OCS, 14 ppm for CH$_3$CN, 3 ppm for HCN...
 - 10-100 ppt with standard gas pre-concentration
- Any polar molecule heavier than HCN can be detected
- Spectral linewidth is \sim1MHz, leading to absolute specificity
Conclusions

• Using CMOS/BiCMOS device technologies not only enables “THz frontend + analog/digital baseband” integration, but may also directly enhance the THz-circuit performance
 – Homogeneous arrays: high-density coherent wave interference
 → Large total radiated power
 Ultra-narrow beam generation
 – Heterogeneous arrays: high-parallelism EM spectral sensing
 → Broadband coverage
 Optimal energy efficiency

• Key technology: versatile THz circuits with multi-functional structures

A unified design framework:
device, circuit, electromagnetism and architecture, all rolled into one
Acknowledgement

• Other Group Members:
 M. Kim, M. Ibrahim, M. I. Khan,
 X. Yi, J. Mawdesley, J. Maclver, Z. Wang

• Collaborators:
 B. Perkins (MIT Lincoln Lab), S. Coy (MIT),
 Q. Hu (MIT), M. Kaynak (IHP)

• Sponsors:

[Logos and images of sponsors]
Large-Scale Terahertz Active Arrays in Silicon Using Highly-Versatile Electromagnetic Structures

Cheng Wang, Zhi Hu, Guo Zhang, Jack Holloway and Ruonan Han

Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology