A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Xiang Yi1, Cheng Wang1, Muting Lu1, Jinchen Wang1, Jesus Grajal1,2, and Ruonan Han1

1Massachusetts Institute of Technology, Cambridge, MA, USA
2Universidad Politécnica de Madrid, Madrid, Spain
Outline

• Introduction
• Comb Radar
• Circuit Implementations
• Measurement Results
• Conclusion
Outline

• Introduction
 • Comb Radar
 • Circuit Implementations
 • Measurement Results
 • Conclusion
Wideband FMCW Radar Applications

- High resolution detection

 ![Localization Image](humatics.com)

 ![Recognition Image](atap.google.com/soli)

- High resolution imaging

 ![Range Resolution](\Delta R = \frac{c}{2 \cdot BW})

 ![Security Imaging](Sheen, TMTT 2001)

 ![Non-Ionizing/Destructive Imaging](Fat tissue, 2D Image, 3D Image [Mostajeran, TMTT 2019])
Wideband THz FMCW Radar Example

• SAR 3D imaging

• Cross-range resolution ΔCR
 – Relies on synthetic aperture D
 – Mm resolution is readily available (e.g. $R=3D$, $\Delta CR=1.5\text{mm}$)

• Range resolution ΔR
 – Relies on bandwidth BW only
 – Mm resolution: wideband (e.g. $BW=100\text{GHz}$, $\Delta R=1.5\text{mm}$)

300GHz Radar Imaging for Non-Destructive Detection of Material Defects
Integrated Radar Survey

- CMOS radar is desired
 - Low cost
 - Integration with analog and digital circuits

- Bandwidth of CMOS radars is limited

- Wideband FMCW radar issues
 - Performance fluctuation
 - Chirp signal generation

![Graph showing EIRP vs Bandwidth with markers for CMOS, SiGe, with lens, and without lens.](Image)
Outline

• Introduction

• Comb Radar

• Circuit Implementations

• Measurement Results

• Conclusion
Comb Radar Concept

- Divide a single wideband channel into N narrowband channels
- Make these N channels operate simultaneously
- Multi-tone operation looks like a comb

\[\Delta T = \frac{T_m}{N} \]
\[\Delta B = \frac{BW}{N} \]
Comb Radar System Diagram

Doubler1 (x2) → Slot Balun → Amplifier → Doubler2 (x2) → Matching Network → BPF LNA

Multiplier (x4) → CH1 TRX → Buffer → LO IQ (5GHz) → Up-Mixer → Divider → S_IF

220~240GHz → IF1
240~260GHz → IF2
260~280GHz → IF3
280~300GHz → IF4
300~320GHz → IF5

13.75~15GHz → External FMCW

10GHz → 75~80GHz

Target

LO IQ (5GHz) → S_SB Up-Mixer

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth
Phase of IF Signals

- For Channel N, the TX signal is
 \[S_{TX,N}(t) = \cos\left(2\pi f_{c,N} + \frac{\pi \Delta B}{\Delta T} t + \varphi_N \right) \]

- The echo signal (\(\tau<<\Delta T\)) is
 \[S_{RX,N}(t) = \cos\left(2\pi f_{c,N} + \frac{\pi \Delta B}{\Delta T} (t - \tau) + \varphi_N \right) \]

- The band-pass-filtered IF signal is
 \[S_{IF,N}(t) = \cos\left(\frac{2\pi \Delta B}{\Delta T} \tau t + 2\pi f_{c,N} \tau \right) = \varphi_{IF,N}(t) \]

- The phase of IF signal \(\varphi_{IF,N}\) has no initial RF phase \(\varphi_N\)
Phase of IF Signals

- The phases of adjacent IF signals are continuous despite of their initial phases

\[\varphi_{IF,N}(t_0 + \Delta T) = \frac{2\pi \Delta B}{\Delta T} \tau(t_0 + \Delta T) + 2\pi f_{c,N} \tau \]

\[\varphi_{IF,N+1}(t_0) = \frac{2\pi \Delta B}{\Delta T} \tau t_0 + 2\pi f_{c,N+1} \tau \]

\[\varphi_{IF,N}(t_0 + \Delta T) = \varphi_{IF,N+1}(t_0) \]
Stitching Process

- IF signals are directly stitched in time domain after calibrations

\[\Delta T = T_m / 5 \]

\[\Delta T = T_m / 5 \]
Compared with Single Channel Radar

- Flatter frequency responses

- More linear chirp signal

- Finer velocity resolution

\[\Delta v = \frac{\lambda}{2NT_{frame}} \]

- SNR is improved

\[\Delta v = \frac{\lambda}{2NT_{frame}} \]

\[f_{error} \]

Chirp Signal

- 5 \times \]
Outline

• Introduction
• Comb Radar
• Circuit Implementations
• Measurement Results
• Conclusion
Comb Radar System Diagram

- Total bandwidth: $5 \times 20\,\text{GHz} = 100\,\text{GHz}$
- Scalable bandwidth extension
- Single antenna solution for each transceiver: 5 antennas, coupling?
On-Chip Antenna Background

<table>
<thead>
<tr>
<th></th>
<th>Slot Antenna</th>
<th>Patch Antenna</th>
<th>Substrate Integrated Waveguide (SIW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expensive Silicon Lens</td>
<td>Need 😞</td>
<td>No Need 😊</td>
<td>No Need 😊</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Wide 😊</td>
<td>Narrow 😞</td>
<td>Narrow 😞 ?</td>
</tr>
<tr>
<td>Inter-Antenna Coupling</td>
<td>Medium 😊</td>
<td>Large 😞</td>
<td>Small 😊</td>
</tr>
</tbody>
</table>

Example

- Slot Antenna: ![Slot Antennas](image)
 - [R. Han, ISSCC 2012]
- Patch Antenna: ![Patch Antenna](image)
 - [R. Han, JSSC 2013]
- Substrate Integrated Waveguide (SIW): ![SIW](image)
 - [S. Hu, JSSC 2012]
SIW Cavity and Slot

- Eigenmode simulation
SIW Cavity with Orthogonal Slots

• Four modes
SIW Orthogonal Slot Antenna

- Multiple resonant modes due to orthogonal slots in SIW cavity
- Tune size parameters to arrange mode frequencies
SIW Orthogonal Slot Antenna

- Wide bandwidth (~40GHz, 14.8%)
- 0dBi peak gain
- Linear polarization (axial ratio > 11.6dB)

- Low coupling (< -31dB)
- 20.5% efficiency
Input Multiplier, Buffer, and SSB Mixer
Doubler1 and Folded Slot Balun

![Diagram of the Doubler1 and Folded Slot Balun circuit](image-url)}
Folded Slot Balun

- Nearly perfect differential output
 - 50GHz (45%) bandwidth
 - 1.3dB insertion loss
 - 0.05dB/0.5° amplitude/phase errors
A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Cascaded Neutralized Amplifier

Doubler1 (x2) → Slot Balun → Doubler2 (x2) → Matching Network

Cascaded Neutralized Amplifier
A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Doubler2

Doubler1 (x2) → Slot Balun → Doubler2 (x2) → Matching Network

Conversion Loss (dB)

IN+ IN- OUT OUT

Doubler2

To MN → To RX

Graphs showing conversion loss and output power vs. output frequency.

© 2020 IEEE
International Solid-State Circuits Conference
Multi-Stub Matching Network

Doubler1 (x2) → Slot Balun → Doubler2 (x2) → Matching Network

S-Parameters (dB)
- S_{21}
- S_{11}
- S_{22}

Frequency (GHz)
190 200 210 220 230 240 250 260 270

S-Parameters (dB)
- S_{21}
- S_{11}
- S_{22}

Layout
IN L1 L2 L3 L4 L5 L6 L7 OUT

BPF LNA
• Square-law mixer for single antenna solution, passive circuit for smaller flicker noise
• Self-biased LNA with high-pass input to suppress unwanted low frequency components
Outline

• Introduction
• Comb Radar
• Circuit Implementations
• Measurement Results
• Conclusion
Chip and PCB Photograph

- TSMC 65nm bulk CMOS technology
- Area: 2.5mm by 2.0mm
- Total power consumption: 840mW
Transmitter Mode Measurement

- Total EIRP without lens: 0.6dBm
- Total EIRP with lens: 20dBm
- Fluctuations: within 8.8dB
Transmitter Mode Measurement

- Friis equation is met at far-field
- Antenna radiation pattern 3dB beamwidth: 90°
- Phase noise: better than -100dBc/Hz @1MHz
Receiver Mode Measurement

- Minimum SSB NF including antenna loss: 22.8dB
- Fluctuation of NF: 14.6dB
- Receiver gain: 22.2dB

Setup is calibrated by PM5

Signal Generator (E8257D) 13.75–15GHz
Signal Generator (N5173B)

PCB

Horn Antenna

Spectrum Analyzer (N9020A)

LO 10GHz

IF

RF

Signal Generator (83732B)

VDI Extender (Transmitter)
A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

FMCW Radar Measurement Setup

Signal Generator 10GHz LO Comb Radar Chip 5 IFs BPFs VGAs NI PXI-5105 Digitizer To PC

DDS AD9164 Multipliers (x4) 13.75~15GHz

Useful signals

Over-chirping

ΔB

ΔT

ΔB

ΔT

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

© 2020 IEEE
Radar Signal Calibration

- Amplitude mismatch
 - Gain mismatch among channels
- Phase mismatch
 - Matching network delay mismatch: fixed
 - Antenna off-axis: range should be large (>20 cm)
- Calibration method [J. Grajal, TMTT 2015]
 - Reference: one single-point like target
 - One-time calibration
Range Accuracy Measurement

- Measured distance matches real distance
Range Resolution Measurement

- Two targets with 2.5mm distance
- Hamming window
- One channel
- 20GHz
Range Resolution Measurement

- Three channels
- 60GHz
Range Resolution Measurement

- Five channels
- 100GHz
Comparison Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>65nm CMOS</td>
<td>65nm CMOS</td>
<td>130nm SiGe</td>
<td>130nm SiGe</td>
<td>55nm SiGe</td>
<td>28nm CMOS</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>220~320</td>
<td>157.9~164.9</td>
<td>210~270</td>
<td>305~375</td>
<td>189.9~252.3</td>
<td>138~151</td>
</tr>
<tr>
<td>Bandwidth (GHz)</td>
<td>100</td>
<td>7</td>
<td>60</td>
<td>70</td>
<td>62.4</td>
<td>13</td>
</tr>
<tr>
<td>Resolution (mm)</td>
<td>1.5</td>
<td>21</td>
<td>2.5</td>
<td>2.1</td>
<td>2.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Minimum Noise Figure (dB)</td>
<td>22.2[^3]</td>
<td>22.5</td>
<td>21</td>
<td>19.7</td>
<td>NA</td>
<td>4(EINF)^[^9]</td>
</tr>
<tr>
<td>Power/NF Fluctuation (dB)</td>
<td>8.8/14.6</td>
<td>3/NA</td>
<td>20/29</td>
<td>10.5/28.6</td>
<td>7.7/NA</td>
<td>1.5/4</td>
</tr>
<tr>
<td>Chip Size (mm^2)</td>
<td>5.0</td>
<td>20</td>
<td>3.2</td>
<td>2.85</td>
<td>0.51</td>
<td>6.5</td>
</tr>
<tr>
<td>DC Power (mW)</td>
<td>840</td>
<td>2200</td>
<td>1800</td>
<td>1700</td>
<td>87</td>
<td>500</td>
</tr>
</tbody>
</table>

[^3]: With TPX focus lens;[^4]: with silicon lens;[^5]: includes antenna and baseband;[^6]: effective isotropic NF which includes the antenna directivity.
Outline

• Introduction
• Comb Radar
• Circuit Implementations
• Measurement Results
• Conclusion
Conclusion

• Comb radar for wideband THz applications
 – Flatter frequency responses
 – More linear chirp signal
 – Finer velocity resolution
 – Improved SNR
 – Scalable bandwidth extension

• A five channel comb radar with 100GHz bandwidth was demonstrated in 65nm bulk CMOS technology
Acknowledgements

• Chip fabrication: TSMC University Shuttle Program
• Measurements: Prof. Charlie Sodini, Prof. Tomás Palacios, Qingyu Yang, Mohamed I. Ibrahim, and Nathan Monroe (MIT); Pu Wang, and Rui Ma (Mitsubishi Electric Research Labs)
• Funding: NSF CAREER award (ECCS-1653100), MIT Center of Integrated Circuits and Systems (CICS), and a gift fund from TSMC
A Terahertz FMCW Comb Radar in 65 nm CMOS with 100 GHz Bandwidth