Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Z. Hu, C. Wang, R. Han
Massachusetts Institute of Technology
Cambridge, MA, USA
Outline

- Introduction
- Array Architecture
- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion
Terahertz Radar as an Important Sensing Mode

• Multiple sensing modes are needed in navigation applications where safety is a priority
 – Examples: self-driving cars, unmanned aerial vehicles, etc.
Terahertz Radar as an Important Sensing Mode

- Multiple sensing modes are needed in navigation applications where safety is a priority
 - Examples: self-driving cars, unmanned aerial vehicles, etc.
- Terahertz sensing is an important complement to light-based sensing (e.g. LiDAR)
 - Sub-THz waves have much lower propagation loss than light waves under various conditions (fog, dust etc.)
Review of Previous On-Chip THz Sensing Arrays

- Direct (Square-Law) Detector Arrays (large scale)

- Techniques of building large-scale direct detector arrays have been well-tested and become mature
- Limitations of direct detection
 - Low responsivity and high NEP, due to limited received RF power \(P_{IF} \propto P_{RF}^2 \)
 - Coherence of RF signals is lost, thus unable to perform beam-forming (electrical scanning)
Review of Previous On-Chip THz Sensing Arrays

• **Heterodyne Detector Arrays (small scale)**

 - **2 x 2 array** [K. Statnikov, et al., TMTT, 2015]
 - **8-unit array** [C. Jiang, et al., JSSC, 2016]

 - **One 164GHz x9 multiplier with a harmonic generator**
 - **18GHz RF input**
 - **Harmonic generator**
 - **DC-pads**

 - **Strengths of heterodyne detection**
 - High responsivity and low NEP, by leveraging high LO power ($P_{IF} \propto P_{LO} \cdot P_{RF}$)
 - Coherence of RF signals is preserved, thus inherently capable of beam-forming

• **There are still challenges of designing large-scale heterodyne detector arrays to form sharp beam**
Our Vision of the Path Towards Sharp THz Beam

- Heterodyne array is desired, and its scale should be pushed up to the extreme
- How large the scale needs to be, to get an angular resolution comparable to that of LiDAR?
 - Using a single array, at 240 GHz, to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed
Our Vision of the Path Towards Sharp THz Beam

- Heterodyne array is desired, and its scale should be pushed up to the extreme
- How large the scale needs to be, to get an angular resolution comparable to that of LiDAR?
 - Using a single array, at 240 GHz, to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed

Our vision is based on the two-way array pattern
- On-board sparse TX array generates sharp beams
- On-chip dense RX array synthesizes single beam to filter out TX sidelobes – with relaxed, but still high, scale requirement
Outline

• Introduction

• Array Architecture
 • Multi-functional Heterodyne Pixels
 • Phase Locking Circuitry
 • Measurement Results
 • Conclusion
RX Chip: Centralized vs. De-Centralized Arrays

- Centralized array relies on a single LO source, however,
 - Generating sufficient power shared by tens of units is difficult
 - Long LO feed lines are lossy and hard to route
• Centralized array relies on a single LO source, however,
 – Generating sufficient power shared by tens of units is difficult
 – Long LO feed lines are lossy and hard to route

• De-Centralized array ensures every unit having an LO source
 – LO sources are coherently coupled; corporate feed is thus eliminated
 – Oscillator power requirement is relaxed
 – Bonus: LO phase noise improves as more units are coupled
Challenges of Scaling and How We Address them

- **Scalability challenge:**
 - Strong coupling mechanism between units is needed

- **Density challenge**
 - Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated
Challenges of Scaling and How We Address them

- **Scalability challenge:**
 - Strong coupling mechanism between units is needed

- **Density challenge**
 - Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated
Challenges of Scaling and How We Address them

• Scalability challenge:
 – Strong coupling mechanism between units is needed

• Density challenge
 – Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated

• Self-Oscillating harmonic mixer (SOHM) employed
 – Oscillator and mixer condensed into one component

• Slotline-resonator-based oscillator coupling employed

• Two interleaved 4x4 array integrated ($A_{unit} = \lambda/2 \cdot \lambda/2$)
Outline

• Introduction
• Array Architecture
• Multi-functional Heterodyne Pixels
• Phase Locking Circuitry
• Measurement Results
• Conclusion
EM Structure of a Single Pixel Unit

- The array consists of 16 cells, each cell contains 2 units.
- The boundaries of each unit is well-defined, as a result of LO coupler design.
- The unit is structurally and electrically symmetric; a PEC boundary (AB) can be drawn in the middle at f_0.

`PMC`
Equivalent Circuit of a Single Pixel Unit

- TL4 and TL4’ are slot antennas
- TL3 and TL3’ are resonator and coupler of oscillators
- TL1, TL1’, TL2, and TL5 are integral components of oscillators
Analysis of SOHM with Further Simplifications
Analysis of SOHM with Further Simplifications

Virtual Ground

Self-Feeding Oscillator

Enhance instability

Antenna (Resonator II)

Coupler (Resonator I)
Analysis of SOHM with Further Simplifications

Virtual Ground

C1
C2
C3

TL1
TL2
TL3
TL4
TL5

Self-Feeding Oscillator

Enhance instability

TL1
M1
C1

Antenna (Resonator I)

Coupler

TL3
TL4

V2f0

Vf,RF

Short @ f0

Vf,IF

from oscillator

from antenna

from antenna

TL1

TL3

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium
10-12 June 2018, Philadelphia, PA
Analysis of SOHM with Further Simplifications

- Self-oscillating harmonic mixer (SOHM) can be regarded as an oscillator that
 - Oscillates at \(f_0 = 120 \) GHz and simultaneously generates LO signal \(f_{LO} = 2f_0 = 240 \) GHz
 - Receives RF power from resonator (\(TL_4 \), Resonator II)
 - Down-converts RF to IF, i.e. \(f_{IF} = f_{RF} - 2f_0 \) (using the non-linearity of the transistor)
- Oscillator is optimized to the optimal phase condition [6] by choosing proper \(Z_{TL1} \) and \(\phi_{TL1} \)
E-Field Distributions at f_0, $2f_0$ (f_{LO}), and f_{RF}

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed
E-Field Distributions at f_0, $2f_0$ (f_{LO}), and f_{RF}

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

At f_0, waves in TL3 induce coupling between oscillators
- E-Field polarizations in TL3 and TL4 of adjacent units ensure radiation cancellation at f_0
E-Field Distributions at f_0, $2f_0$ (f_{LO}), and f_{RF}

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

At f_0, waves in TL$_3$ induce coupling between oscillators
- E-Field polarizations in TL$_3$ and TL$_4$ of adjacent units ensure radiation cancellation at f_0

At $2f_0$, waves are largely confined within the transistor
- Potential radiation is cancelled due to polarizations

At f_{LO}, waves are largely confined within the transistor
- Potential radiation is cancelled due to polarizations

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed
E-Field Distributions at f_0, $2f_0$ (f_{LO}), and f_{RF}

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

- At f_0, waves in TL3 induce coupling between oscillators
- E-Field polarizations in TL3 and TL4 of adjacent units ensure radiation cancellation at f_0

- At $2f_0$, waves are largely confined within the transistor
- Potential radiation is cancelled due to polarizations

- At f_{RF}, waves are received by antennas since they are from a far-field source with the same polarization
Full-Wave Simulation Results of a Pixel Unit

• E-Field Distribution at f_0 (ports at drains are driven)

• E-Field Distribution at $2f_0$ (ports at drains are driven)

• E-Field Distribution at f_{RF} (ports at antennas are driven)

Schematic as reference
Simulation Results of SOHM Performance

- DC Power per unit: 43.2 mW
- Conversion loss (CL): 16 dB (with 50-Ω output load)
- Noise figure (NF): 46.5 dB at $f_{IF} = 5$ MHz; 19.3 dB at $f_{IF} = 100$ MHz
- Antenna peak directivity: 4.8 dB; antenna efficiency: 40 %
Outline

• Introduction
• Array Architecture
• Multi-functional Heterodyne Pixels
• Phase Locking Circuitry
• Measurement Results
• Conclusion
Overview of the Phase Locking Circuitry
Overview of the Phase Locking Circuitry

- Bottom two pixel units inject a small amount of waves at $f_0 = 120$ GHz into the divider
- PLL components generate the VCO control voltage for the entire array
- Due to array-wide coupling, all units are locked
Design of the 120-GHz Divide-by-16 Divider

- **1st stage**: div-by-4 ILFD, based on $f_{\text{inj}} = 4f_{\text{osc}}$ mixing with $3f_{\text{osc}}$
- **2nd stage**: div-by-4 ILFD, based on injected signals modulating the current sources of the ring oscillator
- Total DC power consumption: 10.5 mW
Outline

• Introduction

• Array Architecture

• Multi-functional Heterodyne Pixels

• Phase Locking Circuitry

• Measurement Results

• Conclusion
Die Photo and Chip Packaging Details

- Technology: 65nm CMOS; chip area 2.8 mm² (1.21 mm² for the array)
- Silicon lens is attached to the backside of the chip (backside radiation)
- Off-Chip multiplexer is used to select the desired IF signal from 32 outputs
Overview of the Chip Measurement

- VDI WR-3.4 extender is used as the RF source
- Frequency reference of the chip and the VDI source are synchronized
- Locking range of the array (obtained from divider output): 232.96 GHz – 234.88 GHz

- Center: 73.2 MHz
- Span: 200 kHz
- RBW: 10 Hz
Measured IF Spectra at Low/High Frequencies

- Flicker noise dominates until ~ 450 MHz (IF amp BW = 500 MHz)
Measured IF Spectra at Low/High Frequencies

- Flicker noise dominates until ~ 450 MHz (IF amp BW = 500 MHz)
- At 4.6 MHz (below corner frequency), SNR = 63 dB (RBW = 1 Hz)
- At 475 MHz (beyond corner frequency), SNR = 87 dB (RBW = 1 Hz)
- Other pixels are also locked; they have similar responses, and their f_{IF} all shifts simultaneously as f_{ref} shifts

IF noise spectrum (from spectrum analyzer)

- Start: 1.0 MHz
- Stop: 500.0 MHz
- RBW: 100 kHz

IF noise spectrum (referred to chip output)

- Start: 1.0 MHz
- Stop: 500.0 MHz
- RBW: 100 kHz
Antenna Pattern and Performance Evaluation

- **Conversion gain (dB)**
 \[
 CG = P_{IF} - P_{RF}, \text{ where} \\
 P_{IF} = P_{IF, \text{ analyzer}} - G_{amp}, \text{ and} \\
 P_{RF} = P_{RF, \text{ TX}} + D_{TX} + G_{RX} - 20 \log_{10}(\lambda/(4\pi d))
 \]

- **Noise Figure (dB)**
 \[
 NF = P_{\text{noise}} - (-174 \text{ dBm}) - CG, \text{ where} \\
 P_{\text{noise}} = 10 \log_{10}(10^{(P_{\text{noise, analyzer}} - G_{amp})/10} - 10^{-17.4})
 \]
 (considering \(NF_{amp} = 3 \text{ dB} \))
Antenna Pattern and Performance Evaluation

- Conversion gain (dB)
 \[CG = P_{IF} - P_{RF} \text{, where} \]
 \[P_{IF} = P_{IF, \text{analyzer}} - G_{\text{amp}} \text{, and} \]
 \[P_{RF} = P_{RF, \text{TX}} + D_{TX} + G_{RX} - 20\log_{10}(\lambda/(4\pi d)) \]

- Noise Figure (dB)
 \[NF = P_{\text{noise}} - (-174 \text{ dBm}) - CG \text{, where} \]
 \[P_{\text{noise}} = 10\log_{10}(10^{(P_{\text{noise, analyzer}} - G_{\text{amp}})/10} - 10^{-17.4}) \]
 (considering \(NF_{\text{amp}} = 3 \text{dB} \))

- Here, we have \(G_{\text{amp}} = 49 \text{ dB}, P_{RF, \text{TX}} = -7.1 \text{ dBm}, D_{TX} = 24 \text{ dBi}, D_{RX} = 6.0 \text{ dB}, n_{RX} = 40 \% \text{ (simulated)}, \lambda = 1.28 \text{ mm}, d = 0.1 \text{ m} \)

- For \(f_{IF} = 475 \text{ MHz} \text{ (beyond corner frequency)}, CG = 42.4 \text{ dB}, NF = 42.4 \text{ dB} \)

- Define \textbf{Sensitivity} = \(NEP \cdot \sqrt{1000Hz} = -174 \text{ dBm} + NF + 30\text{dB}; \) for \(f_{IF} = 475 \text{ MHz}, \text{Sensitivity} = 0.105 \text{ pW} \)
Measured Phase Noise of the LO Signal

- VDI extender is placed very close to the chip to capture the leaked near-field radiation at $2f_0$
- Measured $2f_0$ phase noise at 1 MHz offset is -84 dBC/Hz
Performance Comparison

<table>
<thead>
<tr>
<th>References</th>
<th>This Work</th>
<th>[5]</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Method</td>
<td>Heterodyne Detection</td>
<td>Square-Law (Direct) Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array Size</td>
<td>4x8</td>
<td>8</td>
<td>4x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array Scalability</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RF Frequency (GHz)</td>
<td>240</td>
<td>320</td>
<td>280</td>
<td>320</td>
<td>280</td>
</tr>
<tr>
<td>Sensitivity (pW) *</td>
<td>38.8 */0.105 †</td>
<td>71.4</td>
<td>917</td>
<td>1080</td>
<td>250</td>
</tr>
<tr>
<td>DC Power (mW)</td>
<td>980</td>
<td>117</td>
<td>6</td>
<td>38</td>
<td>180</td>
</tr>
<tr>
<td>Chip Area (mm²)</td>
<td>2.80</td>
<td>3.06</td>
<td>5.76</td>
<td>6.76</td>
<td>6.25</td>
</tr>
<tr>
<td>Technology</td>
<td>65nm CMOS</td>
<td>130nm SiGe</td>
<td>130nm CMOS</td>
<td>180nm SiGe</td>
<td>130nm SiGe</td>
</tr>
</tbody>
</table>

Notes:

* Received P_{RF} to get unity SNR for IF output at 1-kHz detection bandwidth
Calculated based on P_{IF} and P_{noise} at $f_{IF} = 4.6$ MHz
† Calculated based on P_{IF} and P_{noise} at $f_{IF} = 475$ MHz
Outline

• Introduction

• Array Architecture

• Multi-functional Heterodyne Pixels

• Phase Locking Circuitry

• Measurement Results

• Conclusion
Conclusion

• For the first time, heterodyne receiver array has achieved the scale and density that are comparable to those of square-law detector arrays

• Our array improves the sensitivity by ~680x compared with the 8-unit heterodyne receiver array in [5], and by ~2400x compared with the best square-law detector arrays

• Scalability and sensitivity improvements make sub-THz array technology a more promising candidate for the implementation of high-resolution beam-forming imagers in the future
References

Acknowledgement

• The authors would like to thank
 – Guo Zhang, Jack Holloway and Dr. Xiang Yi at MIT for technical discussions
 – Dr. Andrew Westwood and Kathleen Howard at Keysight Inc. for their support to the experimental instruments

• This work was supported by
 – The National Science Foundation CAREER Award (ECCS-1653100)
 – Taiwan Semiconductor Manufacturing Company (TSMC)
 – The Singapore-MIT Research Alliance